AMSC 663 Project Proposal

Marco Bornstein
Advisor: Dr. Furong Huang

Problem Formulation

Given a non-convex function f potentially having many saddle points, what
properties will guarantee asynchronous coordinate descent to escape from

strict saddle points and converge to a local minima?

Non-convex Issues

- In non-convex settings, convergence to

\.
\\\\\&\ first-order stationary points is not satisfactory
SRR - Saddle points are the main cause culprit, as

they are first-order stationary yet correspond

to highly suboptimal solutions

- For many non-convex problems, it is sufficient
to find a local minimum

Synchronization Issues

Parameter Server

R] l{sé 1'; csccee -
Worker 1 Worker 2 Worker 3 Worker N

1] !
© E FE E

Database 1 Database 2 Database 3 Database N

Parallel computing breaks data up and
processes it simultaneously by
multiple workers

Algorithms (like SGD) require all
computed gradients be returned to the
global server before next iterate

The speed of parallel computing thus
relies on the slowest worker

Current Literature

Non-convex Optimization:

- How to Escape Saddle Points Efficiently, Jin et al. (gradient descent)
https://arxiv.org/pdf/1703.00887.pdf

-> On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle
Points, Jin et al. (GD/SGD) https://arxiv.org/pdf/1902.04811.pdf

Asynchronous Coordinate Descent (ACD):

- Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al.
https://arxiv.org/pdf/1705.08494.pdf

https://arxiv.org/pdf/1703.00887.pdf
https://arxiv.org/pdf/1902.04811.pdf
https://arxiv.org/pdf/1705.08494.pdf

Methods

Escaping saddle points:

-> Jin et al. shows that perturbing a point at a potential saddle is successful
(no Hessian information needed)

Asynchronous Coordinate Descent (ACD) with delays:

-> Sun et al. provides framework to prove that asynchronous block coordinate
descent converges for bounded delays

Escaping Saddle Points

Say that a point x° is stuck at a saddle point

Taking a ball of radius r (perturbation ball) centered at x®, select a point over a uniform
distribution to be a perturbed point xP

The volume of the perturbation ball largely consists of regions where points will not be
pulled back towards the saddle point

Thus, it is likely that x? can escape the saddle point if perturbed correctly

Definition I1.4. For a p-Hessian Lipschitz function f(-),
we say that x is a second-order stationary point if
IVf(z)| = 0 and X\pnin(V2f(z)) > 0; we also say
X is e-second-order stationary point if:

IVf(@)]l < e and Amin(V*f(2)) > —/pe

Escaping Saddle Points

theoretical result which is key to the Improved-or-Localized

property

€ Any point stuck during the course of ACD undergoes perturbation. This \\ \\\\\\\‘ /j
leads to two possible results: either the perturbed point decreases the R
objective function, or it is close to a second-order stationary point

Vol(Ruuer) _ voz(B;a_n(r))(md,@)
Vol(B{"(r)) ~ Vol(BY"(r))

//

c g e u ” . . 5 / rﬁ\ \\::

=> Bounding the thickness of this “stuck” region is an important ;ﬁ\&g
a'w ~—

Asynchronous Coordinate Descent

Asynchronous coordinate descent is defined by the following update rule:
2] =] = Vif ()

x! - Global point within ACD (x'*! is the subsequent point)
n - Learning rate (step size)
i - The selected block (each worker assigned a block, can also be chosen at random)
% - Decayed point (a worker’s point may be outdated by the update is complete)
y dn il . , _
e (zjl G g=dGD) | i=di)) d(j) = 123:853(1\!{(1(‘7’ n)} <t
Note: delays cause a loss of monotonicity!

Project Goals

Main Goals:

-> Implement the Saddle Escaping Asynchronous Coordinate Descent algorithm
€ Includes optimizing the selection of hyper-parameters within the algorithm

-> Test and analyze the convergence of SEACD

€ Compare with both regular gradient descent (GD) and perturbed gradient
descent (PGD)

e This comparison isn't necessarily “fair”, as GD/PGD are not asynchronous

Approach: SEACD Algorithm

The Saddle Escaping Asynchronous Coordinate Descent (SEACD) algorithm
consists of three inner algorithms:

- Single Worker Asynchronous Coordinate Descent (SWACD)
- Global Asynchronous Coordinate Descent (GACD)
- Perturbed Asynchronous Coordinate Descent (PACD)

Approach:

SWAC D Al gorlth m Algorithm 1: s = SWACD(Z. f,7,1)

Input: Shared point # € BV (the read coordinate information that
may be outdated by the end of the algorithm), objective
function f, learning rate (step-size) n, updating block i
(containing coordinates ¢)

Output: The update s to the shared solution (product of the gradient

Single Worker

Asynchronous and step size)
Coordinate st
2 for c€ido
Descent (SWACD) s | 2ez—nVef(@es
4 end
ST —1I:

5
6 return s

Approach:
GACD Algorithm

Global
Asynchronous

Coordinate
Descent (GACD)

Algorithm 2: (n, 27" E;.,.) = GACD(2/, f,n,7. M, L)

Input: A starting point 27 € RV, objective function f, learning rate
(step-size) 7. delay bound 7, momentum threshold M,
gradient-Lipschitz L

Output: Total iterations performed n, the point 27", energy function

Ej+n at that point

1Y)+ T78

2 while j < vy do 3

3 Choose Block i;

a4 | 23! — 27 « SWACD(2, f, n, i):

5 | if ||z? —29*Y|2 > M then

é je 41 ¥ In Parallel

7 break:

8

9

end

J=i+]

10 end
mn«—G+r—7);
Ej = f(&¥) + § Zisj_o(k = G —7) + D)l|2** —2*5;
13 return n, 2’ E;

(=
L~

Approach:
PACD Algorithm

Perturbed
Asynchronous
Coordinate
Descent (PACD)

Algorithm 3: (z7*!, E;) = PACD(z?, f,n,7,r.T.L)

Input: A starting point 27 € RY, objective function f, learning rate
(step-size) 1), delay bound 7, perturbation radius r. escaping
time bound 7', gradient-Lipschitz L
Output: The following point 27+ (after T steps of perturbation),
energy function E;,, at that point
£ + uniformly ~ B(0, r):
Pl + &
t+ (;
while t < T do
Choose Block i:
yt+l = yl = SW’ACD(y‘, f, . i); In Parallel
t+—1t+1:
end

T—
Ejp1=fT) + & Thcr_.(k— (T — 1) + D|Iv*** — o*|13
pitl = 4T

© ® 9 o nt A& W N =

-
= O

return 2+ E; .,

Approach:
SEACD Algorithm

Saddle Escaping
Asynchronous
Coordinate
Descent (SEACD)

Algorithm 4: (z}) = SEACD(2°. f.n.r.7.T..#,M. L)

Input: An initial point z° € RV, objective function f, learning rate
(step-size) 7, perturbation radius r, delay bound 7, escaping
time bound 7. function change threshold .#, momentum
threshold M, gradient-Lipschitz L

Output: Returns an e-second-order stationary point)

1 By + f(2°):
2 j«0;
s fors=1,23,...do

4 n, o3 Ej, «+ GACD(2?, f.n, v, M, L);
5 j—71+n:

6 | if (E; — Ej_,) > —% then

7 2I¥L E;j iy « PACD(2?, f, 9, 7,7, T, L);
8 j+—J+1:

9 if (E; — Ej—1) > —.% then

10 | break;

11 end

12 end
13 end

14 return 7

Approach

N

<»
YL
-> Each of these algorithms (including GD and PGD) will be = ’

implemented from scratch in Python using the NumPy
software

- Later implementation (for validation) may also be done .
within PyTorch in Python ()

Validation Methods

| plan on testing my code on the following sk F(M) = 2L i“M, Ay) — b))
m
=]

three non-convex problems: MeR*1* 42 rank(M)=r :
1

-> ' ' min —||M — M*||2

Matrix Sensing 2p|| I}

-
>

/ McR41 %42 rank(M)=r
Matrix Completion

Tensor Decomposition - in Z N(PRIRTTRTY
7]

Via”ui”2=1

| will first reproduce the results from these problems in papers [4] and [5] using PGD

before testing SEACD

| plan on using a synthetic database for testing
€ The datais arbitrarily complex

Deliverables

For this semester, | aim to build from scratch the following algorithms:

Gradient Descent (GD)

Perturbed Gradient Descent (PGD)

Single Worker Asynchronous Coordinate Descent (SWACD)
Global Asynchronous Coordinate Descent (GACD)

Perturbed Asynchronous Coordinate Descent (PACD)

Saddle Escaping Asynchronous Coordinate Descent (SEACD)

N 220 2 2

Milestones and Timeline

My major milestones are implementing and testing each one of the algorithms
described on the previous slide

Rough Timeline:

X/

% October-November: Implement and validate results on one of the test
problems for PGD and GD

% November-January: Implement and validate results from each test problem

for SEACD, optimize hyper-parameters, and analyze convergence

References

1. How to Escape Saddle Points Efficiently, Jin et al. https://arxiv.org/pdf/1703.00887.pdf

2. On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points, Jin et al.
https://arxiv.org/pdf/1902.04811.pdf

3. Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al. https://arxiv.org/pdf/1705.08494.pdf

4. Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition, Ge et al.
https://arxiv.org/pdf/1503.02101.pdf

5 No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis, Ge et al.
https://arxiv.org/pdf/1704.00708.pdf

6. JiLiu, Stephen J. Wright, Christopher Re, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel stochastic coordinate
descent algorithm. 16(1):285-322, 2015.

7. F. Niu, B. Recht, C. Re, and S. J. Wright, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Advances
in Neural Information Processing Systems, 24 (2011), pp. 693-701.

8. KifirY Levy. The power of normalization: Faster evasion of saddle points. arXiv:1611.04831 2016

9. Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient for tensor
decomposition. In COLT, 2015.

https://arxiv.org/pdf/1703.00887.pdf
https://arxiv.org/pdf/1902.04811.pdf
https://arxiv.org/pdf/1705.08494.pdf
https://arxiv.org/pdf/1503.02101.pdf
https://arxiv.org/pdf/1704.00708.pdf

