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Problem Formulation

Given a non-convex function f potentially having many saddle points, what 
properties will guarantee asynchronous coordinate descent to escape from 
strict saddle points and converge to a local minima?



Non-convex Issues

- In non-convex settings, convergence to 
first-order stationary points is not satisfactory

- Saddle points are the main cause culprit, as 
they are first-order stationary yet correspond 
to highly suboptimal solutions

- For many non-convex problems, it is sufficient 
to find a local minimum



Synchronization Issues

- Parallel computing breaks data up and 
processes it simultaneously by 
multiple workers

- Algorithms (like SGD) require all 
computed gradients be returned to the 
global server before next iterate

- The speed of parallel computing thus 
relies on the slowest worker



Current Literature

Non-convex Optimization:

➔ How to Escape Saddle Points Efficiently, Jin et al. (gradient descent) 
https://arxiv.org/pdf/1703.00887.pdf

➔ On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle 
Points, Jin et al. (GD/SGD) https://arxiv.org/pdf/1902.04811.pdf 

Asynchronous Coordinate Descent (ACD):

➔ Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al. 
https://arxiv.org/pdf/1705.08494.pdf 

https://arxiv.org/pdf/1703.00887.pdf
https://arxiv.org/pdf/1902.04811.pdf
https://arxiv.org/pdf/1705.08494.pdf


Methods

Escaping saddle points:

➔ Jin et al. shows that perturbing a point at a potential saddle is successful 
(no Hessian information needed)

Asynchronous Coordinate Descent (ACD) with delays:

➔ Sun et al. provides framework to prove that asynchronous block coordinate 
descent converges for bounded delays



Escaping Saddle Points

➔ Say that a point xs is stuck at a saddle point
➔ Taking a ball of radius r (perturbation ball) centered at xs, select a point over a uniform 

distribution to be a perturbed point xp 
➔ The volume of the perturbation ball largely consists of regions where points will not be 

pulled back towards the saddle point
➔ Thus, it is likely that xp can escape the saddle point if perturbed correctly



Escaping Saddle Points

➔ Bounding the thickness of this “stuck” region is an important 
theoretical result which is key to the Improved-or-Localized 
property
◆ Any point stuck during the course of ACD undergoes perturbation. This 

leads to two possible results: either the perturbed point decreases the 
objective function, or it is close to a second-order stationary point 



Asynchronous Coordinate Descent

Asynchronous coordinate descent is defined by the following update rule:

xj - Global point within ACD (xj+1 is the subsequent point)
η - Learning rate (step size)
i -  The selected block (each worker assigned a block, can also be chosen at  random)
x̂j - Decayed point (a worker’s point may be outdated by the update is complete)

Note: delays cause a loss of monotonicity!



Project Goals

Main Goals: 

➔ Implement the Saddle Escaping Asynchronous Coordinate Descent algorithm

◆ Includes optimizing the selection of hyper-parameters within the algorithm 

➔ Test and analyze the convergence of SEACD

◆ Compare with both regular gradient descent (GD) and perturbed gradient 
descent (PGD)

● This comparison isn’t necessarily “fair”, as GD/PGD are not asynchronous



Approach: SEACD Algorithm

The Saddle Escaping Asynchronous Coordinate Descent (SEACD) algorithm 
consists of three inner algorithms:

➔ Single Worker Asynchronous Coordinate Descent (SWACD)
➔ Global Asynchronous Coordinate Descent (GACD)
➔ Perturbed Asynchronous Coordinate Descent (PACD)
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Approach

➔ Each of these algorithms (including GD and PGD) will be 
implemented from scratch in Python using the NumPy 
software

➔ Later implementation (for validation) may also be done 
within PyTorch in Python



Validation Methods

I plan on testing my code on the following 
three non-convex problems:

➔ Matrix Sensing
➔ Matrix Completion
➔ Tensor Decomposition

➔ I will first reproduce the results from these problems in papers [4] and [5] using PGD 
before testing SEACD

➔ I plan on using a synthetic database for testing
◆ The data is arbitrarily complex



Deliverables

For this semester, I aim to build from scratch the following algorithms:

➔ Gradient Descent (GD)
➔ Perturbed Gradient Descent (PGD)
➔ Single Worker Asynchronous Coordinate Descent (SWACD)
➔ Global Asynchronous Coordinate Descent (GACD)
➔ Perturbed Asynchronous Coordinate Descent (PACD)
➔ Saddle Escaping Asynchronous Coordinate Descent (SEACD)



Milestones and Timeline

My major milestones are implementing and testing each one of the algorithms 
described on the previous slide

Rough Timeline:

❖ October-November: Implement and validate results on one of the test 
problems for PGD and GD

❖ November-January: Implement and validate results from each test problem 
for SEACD, optimize hyper-parameters, and analyze convergence
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